EIC physics from the JLab12 perspective: Concepts and measurements

C. Weiss (JLab), INT Workshop "Gluons and the quark sea," Seattle, 16-Nov-10

Dynamics of color fields in nuclei

nuclear gluons, shadowing saturation, strong color fields fluctuations, diffraction

3D quark/gluon structure of the nucleon

 ΔG and polarized sea transverse distributions, orbital motion parton correlations

Emergence of hadrons from color charge

fragmentation, "timelike QCD" radiation/energy loss in matter

Electroweak → Talk McKeown

Conceptual framework

Unifying perspective JLab12 ↔ EIC Focus on physical system, not formal descriptors

• EIC measurements "Qualitatively new"

Gluon/sea imaging with excl. mesons Orbital motion and target fragmentatn Toward parton correlations

Color transparency Gluons/sea in nuclei Shadowing, coherent effects

Disclaimer: Emphasizes "evolutionary" aspects. No attempt at completeness. Results of other facilities folded into considerations: COMPASS, HERMES, HERA, RHIC, LHC

Nucleon structure: Physical system

Nucleon in QCD many–body system

Different components of wave function, particle number, effective dynamics

"Face" changes with excitation energy and resolution scale!

Components probed in ep

JI ab 12 GeV Valence quarks: Source,

quantum numbers

few-body

Sea quarks, gluons, Q^2 dependence EIC

many-body

Physical properties

Parton densities

Transverse spatial distributions

Orbital motion, angular momentum

Correlations

Nucleon structure: Transverse imaging

ullet Map transverse distribution of partons and its change with x

Fundamental: Twist–2, lattice

Dynamics: Diffusion, vacuum structure

Essential for pp@LHC, multiparton processes

Hard exclusive processes

$$\begin{array}{ll} J/\psi, \phi & \text{gluons selective!} \\ \gamma, \rho^0 & \text{gluons} + \text{singlet quarks} \\ \rho^+, K^*, \pi, K & \text{non-singlet quarks} \end{array}$$

Finite–size effects interesting, under exp. control HERA: $Q^2 \sim 10\,{\rm GeV}^2$ for small–size regime

• JLab12: Valence quarks with DVCS

Meson production: Precise data incl. L/T, but difficult to control reaction mechanism

Gluon imaging with exclusive ϕ : Much interest! 6 GeV results consistent with high-energy t-dependence

• EIC: Imaging gluons and sea quarks with meson production

Detailed simulations available \rightarrow Diehl, Burkardt, Guzey, Sabatie

Nucleon structure: Orbital motion

Explore quark/gluon orbital motion and its polarization dependence

Non-pert. dynamics: Confinement, spin-orbit forces Orbital angular momentum $\rightarrow large-x$ PDFs, form factors

• Semi-inclusive DIS p_T dependence

Cannot separate intrinsic k_T in WF from soft final-state interactions and fragmentation TMDs combine intrinsic k_T and FSI

New insight from p_T' of target fragments: Origin of FSI? QCD radiation?

• JLab12: Polarized SIDIS in valence region

Limited phase space for fragmentation, separation target ↔ current region

ullet EIC: Wide kinematic range, low \leftrightarrow high p_T

Aim for current–target correlation measurements!

OAM: Comprehensive approach based on TMDs, form factors, GPDs . . . model—dependent!

Needs JLab12 and EIC for data + interpretation

Nucleon structure: Correlations

Explore correlations in nucleon's partonic WF

Next step after one–body densities QCD vacuum structure, non-pert. scale $\rho \ll R_{\rm had}$

Cf. short-range NN correlations in nuclei JLab Hall A, CLAS

ullet Multiple hard processes in pp indicate substantial correlations

CDF 3 jet + gamma consistent with $ho \sim 0.3\,\mathrm{fm}$

LHC: High rates for multijets events, great interest New field of study! Background to new physics

- ullet JLab12: Higher twist in incl. DIS g_1,g_2,F_2,F_L
- EIC: Several possibilities Need to think!

Transverse distributions essential input to pp analysis

GPDs in ERBL region from Re(DVCS): Distribution amplitude for $q\bar{q}$ pair in nucleon

Twist-2, lattice results. Information on number of pairs, not ρ

Color fields in nuclei: Physics

Explore dynamics of color fields in nuclei

Fields change with energy! QCD radiation, self–interaction Coherence effects $A \neq \sum N$

Interaction of small—size high—energy probe with nucleus

• QCD phenomena

Color transparency: Gauge theory

Gluon shadowing: QM coherence

Saturation: Strong gluon fields, new dynamical scale Q_s , "black disk regime"

Diffraction: Quantum fluctuations

Color fields in nuclei: Measurements

Color transparency

JLab12: Onset of CT in meson electroproduction A(e,e'M)X Formation length $\sim 1-2\,\mathrm{fm}$, expansion/hadronization inside nucleus CLAS 6 GeV ρ^0 data Hafidi et al.

EIC: Definitive tests of CT through vector meson production Wide range of coherence lengths $l_{\rm coh}\gg R_A$ and Q^2 Fundamental QCD prediction! Necessary to establish transparency before studying opacity/blackness

Nuclear gluon densities and shadowing

JLab12: EMC effect in valence region

EIC: Nuclear gluon from Q^2 dependence, Leading \leftrightarrow higher—twist mechanisms of nuclear shadowing Fundamental quantum—mechanical coherence effect! Necessary input for saturation in eA, hard processes in AA at RHIC, LHC

• Gluon radii of light nuclei

JLab12: Quark matter radius of ⁴He with coherent DVCS

EIC: Gluonic radii of light nuclei with exclusive J/ψ Fundamental QCD characteristic! QM coherence effect

ullet Saturation o Talks Kovchegov, Dumitru, Accardi, Lamont, Marquet

Emergence of hadrons: Physics

 Understand emergence of hadrons from color charge in QCD

Conversion energy \rightarrow matter

Dynamical mechanisms: QCD radiation, pair creation by soft fields

Vacuum structure: $q\bar{q}$ condensate

• e^+e^- : Fragmentation functions

Essential input to SIDIS

Many puzzles: $s\bar{s}$, kaons, baryons

• *ep*: Target fragmentation

How does nucleon with "hole" materialize? x, spin dependence

Correlations current-target, e.g. $K-\Lambda$

Unfavored fragmentation functions, charge separation

Summary

Emerging physics narrative for main themes of EIC program

Focus on dynamical system at the center:

Degrees of freedom, spatial extent, motion, interactions

Connect with condensed matter, low-energy nuclear, and astrophysics. Needs further development!

Qualitatively new probes available with EIC

Exclusive meson production gluon imaging x>0.01, sea quarks Target fragmentation k_T dependence, correlations, nucleon breakup High-energy nuclear scattering nuclear gluons, shadowing, saturation

• JLab12 and EIC — complementary and interdependent

EIC can establish reaction mechanism and QCD description of exclusive and semi-inclusive processes. JLab12 will provide precise data in valence region.

Both needed for orbital angular momentum, spin-orbit interactions, imaging of valence-like gluons